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A simple model of positional distortion in vector databases is presented. Positions are
distorted by the addition of a vector field. The model is compared to the familiar
epsilon band, which is shown to seriously underestimate positional displacement.
The model is calibrated against a set of street centerline databases for the Goleta, CA
area, using matched points. Properties of the distortion field are determined,
including the variograms of the x and y components. Using conditional simulation it
is possible to generate a population of possible distorted positions, and thus to study
the properties of the distortion under various forms of analysis, including
propagation through GIS operations. The paper reviews several general strategies for
interoperation of positionally distorted geographic data sets in the context of
Intelligent Transportation Systems. One proposed strategy, the ITS Datum, is
reviewed in detail. The paper concludes with a general discussion of interoperability
of geographic data sets in the context of positional distortion.
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1. Introduction

As spatial databases proliferate, it is becoming increasingly common to encounter situations where
multiple sources of the same information exist. National mapping agencies may offer digital
topographic databases of the same area at different scales, and if the spread of scales is small, the two
databases may offer different versions of the same features. Databases produced by local government
agencies may offer different versions of the features identified in the databases produced by national
mapping agencies. And in some domains, two or more companies may offer competing databases of
the same area in the open market. To a user of digitized street centerlines, the TIGER files produced
by the U.S. Bureau of the Census and the U.S. Geological Survey provide one potential source in the
public sector, while for most areas of the U.S. coverage is also provided by varying numbers of
companies in the private sector.

Many options are open to the user in such situations. One might reasonably ask for measures of the
accuracy of each database, and select the most accurate; or evaluate the options by weighing the
relative costs against the relative accuracies. One might use one database as a more accurate source, as
a basis for correcting other databases or for determining their accuracies. In comparing two databases
it might be that one has more accurate attributes, but the other has more accurate positions. In this
case one might choose to conflate the two databases, to produce a single database that has the best
characteristics of both. If positions are known to be equally inaccurate in both databases, one might
want to average them, on the grounds that an average of two observations is a better estimate of the
truth.

Street centerline databases play major roles in the set of advanced services known as Intelligent
Transportation Systems (ITS; see, for example, recent publications of ITS America, or of the
Transportation Research Board of the National Research Council). Consider a scenario in which a
driver has a navigation system installed in a vehicle, and is receiving information by wireless
communication from a central server, consisting of dynamic updates to driving information. For
example, the database in the vehicle might know about one-way streets and other semi-permanent
driving conditions, but the server might provide more recent information on road construction,
congestion, or accidents. Since the market for street centerline databases has many suppliers, it is
possible that the database being used by the server is different from the one being used by the driver's
client. The two databases will likely differ in the set of streets represented, the precise naming and
other attributes of streets, the positions of streets, and the topology of their connections. All of these
cause problems when the server must send unambiguous information about the locations of events
and road conditions to the client.

The purpose of this paper is to explore one specific aspect of these problems, that of positional
accuracy. Section Two presents a basic theory of positional accuracy in spatial databases. The theory
is then applied to a sample of commercial street centerline databases from an area of Goleta, CA, in
Section Three, and the positional distortions present in the data are analyzed. Section Four discusses
alternative models, and their implications for interoperability between databases in the ITS context.
Section Five presents other aspects of the accuracy problem for these databases related to attributes
and topology. Finally, Section Six places the work in the context of proposed standards for ITS.
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2. Positional Accuracy

Consider a well-defined point, such as a survey monument, whose position can be measured
unambiguously on the ground. Let the true location of this point in some coordinate system be
denoted by xxxx, and let the position recorded in some database be x'x'x'x'. The difference between these two
positions is the positional error of the point's measurement, a property both of the point and of the
method of measurement. If the method of measurement is constant over a number of points or a
number of measurements of the same point, we can characterize its accuracy in terms of descriptive
statistics of the difference between xxxx and x'x'x'x'.

Suppose (Hunter and Goodchild, 1996) that the displacement between the true location of a point
and its recorded position can be represented by a vector field eeee(xxxx). In other words, the apparent
position (x',y') is related to the true position (x,y) by the equations x' = x + ex(x,y); y' = y + ey(x,y);
where ex, ey are the x and y components of the vector field eeee. For example, each point might be
displaced systematically in one direction by a constant amount, implying a constant eeee. The precise
form of eeee defines the ‘rubber-sheet’ distortions of position in the plane—if we think of the map as
drawn on a rubber sheet, then after distortion each point xxxx in the plane will be shifted by an amount
and in a direction determined by eeee(xxxx). To ensure that the sheet is not 'folded'—one of the necessary
conditions for topology to be preserved—it is necessary that the partial derivatives of eeee be greater
than -1, that is:

∂ex /∂x < -1   and ∂ey /∂y < -1 (1)

This theory of positional accuracy clearly breaks down if the point is not well-defined; that is, if it is
not possible to associate a position recorded in a database with a more accurate measurement
unambiguously. For example, problems arise in assessing the accuracy of the recorded position of
‘Main and First’ if Main intersects more than once with First, or if it is not clear exactly where
position was measured in the area of the intersection. Survey monuments resolve this problem by
establishing unique identifiers for each monument, and by fixing physical monuments in the field.

This problem of matching unambiguously occurs frequently in attempts to define the positional
accuracy of lines or the boundaries of areas. The epsilon band provides a convenient and widely used
basis for describing positional uncertainty of such objects. Perkal (1966, and see Chrisman, 1982)
defined the band as the set of points S(ε) such that the shortest distance d(xxxx) from any point xxxx in the
set to the line or boundary was less than some amount epsilon: {xxxx|xxxx∈S if d(xxxx)<ε}. Suppose the line or
boundary is the result of some process of interpretation from source information, and is therefore
subject to various forms of uncertainty, including uncertainties due to variations between
interpreters, misregistration, or digitizing error. Suppose further that some minimum epsilon εmin can
be defined such that S(εmin) just contains all possible versions of the line. Then εmin is a useful
description of the positional uncertainty of the line or boundary. Many applications of the concept
have been described in the literature. Goodchild and Hunter (1997) have recently extended the
concept to a probabilistic version, in order to deal with certain difficulties in the original concept,
including the problems of estimating it from limited samples.

In the epsilon band formulation S is defined by distances measured perpendicular to the line or
boundary. In reality, the positions of lines or boundaries can be displaced in any direction, but the
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direction of displacement is often unknown, and it is precisely in these situations that εmin is the most
effective measure.

In order to estimate eeee at any point, we need to be able to 'match points', in other words we need
knowledge of the apparent and true position of a point. As Figure 1a shows, this is sometimes
possible if the line or boundary contains identifiable, well-defined points, such as sharp bends,
intersections, crossings of other linear features, monuments, etc. In general, however, such point
matching is not possible except at a few locations. It is also possible to interpolate (Figure 1b), by
assuming that in between matched points, other points can be matched according to a simple rule.
Consider a point on the true line intermediate between two matched points. Let the distance from
one point be a proportion α of the distance between the two matched points along the true line.
Locate a point on the apparent line, the same proportion of the distance along the apparent line
between the matched points. Then it is reasonable to assume that these two intermediate points also
match (see, for example, Edwards, 1994a,b; Goodchild, Cova, and Ehlschlaeger, 1995). Goodchild
and Hunter (1997) show, however, that such simple interpolation can often be erroneous,
particularly if the specifications of the two lines are substantially different (e.g., the true line is at a
more detailed scale than the apparent line).

Figure 1:  Matching points to estimate displacement:  (a) matching well-defined points; (b)
matching interpolated points based on distance along the line.

When displacements are measured between matched points the displacement vector can be at any
orientation to the line, including parallel to it. Displacement parallel to the line would occur, for
example, if an east-west street were subject to a registration error that resulted in displacement to the
east. Mean absolute positional error will be measured as the mean length of the displacement vector
at the matched points, and RMS error will be measured as the root mean square. Let eeeei denote the
displacement vector at the ith matched point.  Then RMS error is:

e = e
i .ei

i
∑ n (2)

When no matching is possible, it is necessary to make additional assumptions in order to measure
the displacement between two lines. Implicit in the epsilon band and its derivatives is the
assumption that the shortest distance between a point xxxx and a line is a useful measure of the point's
displacement from the line. If the point could be matched, then its true displacement, or the

(a)

α
1-α

α 1-α

(b)
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magnitude of the vector eeee, would be at least as large as the shortest distance d(xxxx). While eeee may be at
any orientation to the line, the shortest distance between the point and the line will always be
measured in a direction that is locally perpendicular to the line.

It follows that estimates of positional accuracy implied by the epsilon band model and its derivatives
are underestimates of the true positional displacement in geographic coordinates. To evaluate the
bias, we now consider four cases, in decreasing order of generality.

&DVH#41#5DQGRP#RULHQWDWLRQ#RI#OLQHV#DQG#GLVSODFHPHQWV
Consider first the case of a database containing lines at random orientations. For example, the

lines in a database of digitized contours might be expected to occur at all orientations, such that a
histogram of line orientations would show a uniform distribution. With a few notable exceptions,
this seems a reasonable assumption to make about databases of naturally occurring phenomena (the
oriented lakes on the North Slope of Alaska are a notable exception, as are oriented dune systems).

We assume also that displacement occurs in all directions with equal likelihood. Although there must
be strong spatial autocorrelation in the displacement field e, nevertheless over a large enough area the
assumption of a uniform distribution of displacement directions seems reasonable.

Without loss of generality, consider the orientation of the displacement vector with respect to a
direction that is locally perpendicular to the line, as shown in Figure 2. Writing e for the magnitude
of e, the projection of e onto the perpendicular is of length ecosα. Assuming that all displacement
directions are equally likely, and limiting β to the range {0,π/2} (the other three quadrants are
symmetrical), the probability that a displacement lies between β and β+dβ of the perpendicular is
given by 2/π dβ. The mean value of ecosβ is obtained by integrating over the quadrant, that is:

e =
2

π
ecosβ

0

π 2

∫ dβ =
2

π
e (3)

If we treat e as a random variable as well as β, and assume that there is no correlation between the
two variables, then e on the right hand side of the equation can be interpreted as the mean
magnitude of the displacement vector. Thus the measurement of displacement perpendicular to the
line, rather than in the true direction of displacement, results in an underestimation of displacement
by a factor of 2/π, or 0.6366. A similar analysis, integrating cos2β instead of cosβ, gives a factor of
1/√2 or 0.707 for the underestimation of RMSE.

Figure 2:  Relationship between the true displacement vector, line direction, and a local
perpendicular.

β
eeee
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&DVH#51#5DQGRP#GLVSODFHPHQW#GLUHFWLRQ/#OLQHV#SDUDOOHO#WR#D[HV
Assume now that the database contains only lines parallel to the axes, in equal proportions. If

displacements are oriented randomly, then all angles of orientation of displacements with respect to
perpendiculars are still equally likely, and the results obtained in (1) above are still valid.

&DVH#61#2QH#GLVSODFHPHQW#GLUHFWLRQ/#OLQHV#LQ#UDQGRP#GLUHFWLRQV
The results obtained in (1) above are also valid if displacement occurs in one direction, but lines

are oriented in all directions with equal likelihood.

&DVH#71#2QH#GLVSODFHPHQW#GLUHFWLRQ/#OLQHV#SDUDOOHO#WR#D[HV
Finally, assume that displacement occurs in one direction, but equal proportions of lines are

oriented parallel to each of the axes. The expected distance of displacement perpendicular to the line
is now 1/2 cosβ + 1/2 sinβ, which reduces to its minimum value of 1/2 when β = 0 or π/2, that is,
when the displacement is parallel to one of the axes, and has its maximum value of 1/√2 or 0.707
when displacement is at 45 degrees to the axes. Thus when displacement is parallel to one of the
travel directions in a rectilinear street pattern, the apparent value of epsilon will be only one half the
true mean displacement distance.

3. Positional Accuracy Case Study

As part of a program to test various ITS protocols and standards, the VITAL (Vehicle Intelligence
Testing and Analysis Laboratory) group of the National Center for Geographic Information and
Analysis at the University of California, Santa Barbara, acquired copies of six different street
centerline databases for part of Goleta, CA. The databases were transformed to a common coordinate
system. Each pair of databases was searched for common, unique intersections between named
streets. Finally, every instance of a matched intersection was used to obtain a vector eeeeABABABAB(xxxx), where xxxx is
the location of the intersection recorded in Database A, and xxxx+eeeeABABABAB(xxxx) is the location recorded in
Database B.

The magnitude of the displacement vector varied from less than a meter to more than one hundred
meters.  Strong spatial autocorrelation was observed in the distribution of displacement, as entire
streets or even neighborhoods were misaligned in x or y or both (Figure 3).  Straight sections of
major streets appeared least subject to error, whereas sinuous roads in hilly suburban neighborhoods
produced large displacements.  The results appeared logical when considered in the context of how
the databases are generated by map vendors, the emphasis being on major streets.  Moreover, as
subdivisions are developed, vendors append them piecemeal to existing databases, each section with
its own displacement characteristics.
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4. Models of Distortion Fields

If a complete model of eeeeABABABAB were available, it would be possible to correct A to match B exactly, by
applying a correction vector to every coordinate pair in A. Alternatively B could be corrected to
match A. In the context of ITS, any position derived from A would be unambiguously meaningful to

Figure 3: Distortion vectors computed by matching nodes between two commercial databases
for part of Goleta, CA. The lower illustration is an enlargement of part of the upper.
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another system using B, and interoperability of the two databases would have been achieved, in the
narrow sense of unambiguous specification of location. In the case study described in Section 3 a
comparatively dense sampling of eeeeABABABAB was obtained, but not a complete model. In this section we
discuss properties of such a model.

Kiiveri (1997, p. 34) notes that 'smoothness' is a necessary property of distortion fields. If zero-order
discontinuities or 'cliffs' were allowed, then breaks would occur in any linear features intersected by
such discontinuities. In general, we require eeee(xxxx+δδδδxxxx)-eeee(xxxx) to tend to zero as the magnitude of δδδδx x x x tends
to zero. In addition to an absence of cliffs, note the conditions given earlier on the magnitude of the
signed gradient of eeee, to exclude the possibility of 'folding' the rubber sheet.

Kiiveri (1997) models eeee with a truncated series defined by trigonometric functions of the coordinates
x and y. This results in a convenient set of boundary conditions, since eeee    is required to go to zero at
the edges of the (rectangular) study region. In our case, however, there seems no reason to impose
this boundary condition, since the boundaries of our study region were arbitrarily defined by us, and
bear no relationship to the boundaries used by the database creators. Thus we have no reason to
expect distortion to go to zero everywhere on our boundary.

The literature on spatial interpolation and the modeling of surfaces is clearly divided into two
schools. The first school models surfaces as functions of the spatial variables, using two convenient
approaches. Any function f(x,y) can be described by a polynomial in x and y, and this principle lies
behind trend surface analysis, which estimates such a polynomial from point observations, arbitrarily
limiting the number of terms in the polynomial to be much less than the number of observations,
and using only the low-order terms. Similarly, any such function can be described by an appropriate
Fourier series in trigonometric functions of x and y, and again the series is arbitrarily limited by the
number of observations to the low-frequency terms. Kiiveri's approach is a variant of this second
method.

Two strong arguments can be made against this first school. The use of the spatial variables as the
basis of modeling often leads to spurious artifacts at the edge of the study area (Unwin, 1975), unless
arbitrary boundary conditions are applied, such as those used by Kiiveri (1997). Second, the need to
truncate series because of limited numbers of observations ensures that although these surfaces are in
principle completely general, in practice they have the form of the low-order terms in the series, such
as simple waves in the Fourier case, or simple linear or quadratic surfaces in the trend surface case.
Yet it is very unusual to find theoretical justification for such very specific forms. For example, we
can see no reason why the errors introduced by map-making or surveying would lead to a distortion
surface that has the form of a simple linear or quadratic function of position, or a simple
trigonometric function.

The second school makes no such assumptions about the form of the surface, but instead invokes
other principles for surface construction. For example, the procedure known widely as inverse-
distance weighting determines the function f at any point as a weighted average of the nearest
observed values, with weights that decrease with distance. Kriging also uses a linear combination of
nearest observed values, but with weights that are computed from the theory of regionalized
variables. For a general review of interpolation methods see Lam (1983); and for reviews of
geostatistics and Kriging see Isaaks and Srivastava (1989) or Deutsch and Journel (1992). We choose
Kriging in this analysis because we know very little about the form of the distortion surface that
results from the errors inherent in map-making methods, and because of its strong theoretical basis.
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Figure 4 shows a typical distortion field semivariogram, computed from the observations resulting
from node matching two of the Goleta databases. We computed variograms for both components of
eeee and for all pairs of databases.

With a complete interpolated surface, it is now possible to correct all of the coordinate pairs in any
one database to match any other. Since Kriging is an 'exact' interpolator, producing a surface whose
values at points of observation match the observations exactly, the corrected databases will fit
perfectly at all matched nodes. There will still be differences in general, however, between features in
the databases that were not matched. For example, although the nodes at both ends of a curved street
may have been matched, we cannot guarantee that the representations of the intermediate curves will
also match. But because distortion fields must be smooth, we expect that fits will generally be good.

It was argued earlier that cliffs could not exist in a distortion field because any such cliff would
introduce a sharp break in any linear feature that crossed it. Let ssss and ssss+δδδδssss denote two points on a
linear feature a small displacement    δδδδssss apart. As noted earlier, a cliff exists if eeee(ssss+δδδδssss) - eeee(ssss) tends to
some finite vector aaaa as the magnitude of δδδδs s s s tends to 0. Where this condition exists, a 'fold' or a 'rip'
will result depending on whether the scalar product a.a.a.a.δδδδssss is less than or greater than zero, respectively.
Thus it was argued earlier that such cliffs cannot exist in distortion fields.

But this argument has a major flaw, specifically, that such linear features exist everywhere, and
therefore expose the existence of cliffs. In practice, even a dense street network like that shown in
Figure 3 has substantial areas where no linear features exist, and where cliffs would go undetected.
The set of point observations of eeee that results from matching nodes is very far from a randomly-
located sample.

Suppose, for example, that a Goleta street centerline database had been assembled from a patchwork
of varying quality, using various methods of registration to a uniform, geodetically-controlled base.
Within each patch, distortion might be characterized by a constant eeee, or by the result of a simple
affine transformation, described by a distortion field whose components ex and ey are linear functions
of x and y. But sharp discontinuities might exist at the edges of patches, where one patch's data were
edgematched to another's. This model of eeee might be expected to apply to a database constructed by
georegistering subdivision plats, or to one built from a mosaic of aerial photographs. Hunter and
Goodchild (1995) show that the tiling used by the Gestalt photomapper introduces similar patterns
of discontinuity in digital elevation data. Figure 5 illustrates the model.

One might expect that such a pattern of distortions would be unacceptable, because of the extreme
distortions and breaks it would introduce in any features crossing patch boundaries. But in reality the
degree of connectivity between subdivisions in a suburban area like Goleta can be relatively low, as
illustrated in Figure 3. Areas of this figure do indeed show the kinds of distortion being suggested
here, of persistent systematic distortion over substantial areas, and sharp breaks elsewhere. We plan
to continue this work by experimenting with patch-building algorithms, to see if they provide a
better-fitting estimate of the distortion field than standard Kriging, with its assumption of
smoothness.
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5. Other Aspects of Inaccuracy

Positional accuracy is just one of several aspects of database disagreement that present problems for
interoperability. Disagreement also arises in street names, topology, and in attributes such as address
ranges. Some differences are simply variations in vendor practice, while others are due to operator
interpretation, and there are errors of commission and omission. In the County of Santa Barbara,
20–40% of all centerlines have blank street names—this is true of all the databases examined in this
study. Vendors differ in their treatment of freeways: some store a single centerline; others represent
the two sets of lanes separately. Similarly, traffic circles and divided streets may be interpreted
differently. There are numerous instances of alleys and non-navigable pathways being coded as
streets. This leads to topological disagreements with other databases.

The exercise of sampling the error vector field (Figure 3) illustrates the problems that arise due to
these disagreements. We needed to find street intersections in one database that could be
unambiguously identified in the other database. This was difficult because of database differences:
Avenue was abbreviated as ‘Ave’ or ‘Av’; there were problems of operator interpretation (e.g. Ward
Memorial Boulevard vs Clarence Ward Memorial Boulevard) and differences in spelling the same

Figure 4.  Example of an empirical variogram for the magnitude of the distortion field between
two street centerline databases. The smooth curve shows the fitted variogram model.
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name (Brien vs Brian). A routine was devised to search for containment of the street name root
(“Main”) of database A in the combined name fields (“Main St”) of database B. This strategy
produced a relatively good match rate of about 90%, although some spurious matches had to be
eliminated manually. There were systematic errors in that freeways and ramps were almost never
matched, due to blank data fields or differences in coding conventions (e.g., US-101 vs Hwy 101).
Further work on name-based matching and other messaging methods is ongoing at VITAL.

6. Implications for ITS

In these data sets we have been able to obtain comparatively dense point estimates of distortion
fields, by matching nodes. In practice, however, a user of Database B in a vehicle receiving
instructions based on Database A installed at the server would know virtually nothing about their
compatibility. With positional errors commonly as high as 50m, it is possible for a given coordinate
pair transmitted from the server to be assigned to the wrong street by the client. Without a model of
eeeeABABABAB, it is impossible for the client to correct the coordinate pair. Moreover, in a competitive,
commercial environment it is very unlikely that all vendors of street centerline databases would agree
to produce only one, 'true' database.

Figure 5: A 'patch' model of a distortion field, with discontinuities at patch boundaries (arrow
lengths not to scale)

The ITS Datum proposal (Siegel et al., 1997) would identify a small number of common control
points at public expense, on the understanding that each vendor would establish the coordinates of
each control point in its own coordinate system. Each control point would be established with a
physical monument, or by a set of rules for selecting reference points at interchanges, and could be
surveyed as accurately as possible by any database vendor or agency. Suppose control point i is
determined to be at (xiA,yiA) by the vendor of Database A, and at (xiB,yiB) by the vendor of Database B.
In effect, one observation of the field eeeeABABABAB is now established. From a series of such observations, any
system would be able to estimate all of eeeeABABABAB, and determine the corrections to be applied to any
coordinate pair from A to make it meaningful in the context of B.
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One simple operational procedure would be as follows. Any coordinate pair to be communicated
from A to B would be associated with an ITS Datum point, by expressing location as x and y offsets.
B would then apply the same offsets to its own version of the datum point's location. In effect, this
procedure forces eeeeABABABAB to be modeled as a set of domains, each domain being associated with one ITS
Datum point, with a constant value of eeee in each domain, while the definition of domains is left up to
the server.

Alternatively, B might anticipate this situation by acquiring in advance a list of all ITS Datum points
with their coordinates in both A and B databases. Then a model of eeeeABABABAB could be built using some
convenient method of spatial interpolation. Kriging would likely not be appropriate because of its
high computational complexity, which might overwhelm a 'thin' client, and because the number of
available observations is likely to be small. Instead, a simple triangulation with linear interpolation
within triangles might be appropriate, although this method would inherently assume that the ITS
Datum points had been carefully located at the locations of extreme high and low distortion. We
intend to experiment with various procedures in the coming months, as part of VITAL's project to
test ITS standards and protocols.
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